Magic-Factor 1, a Partial Agonist of Met, Induces Muscle Hypertrophy by Protecting Myogenic Progenitors from Apoptosis
نویسندگان
چکیده
BACKGROUND Hepatocyte Growth Factor (HGF) is a pleiotropic cytokine of mesenchymal origin that mediates a characteristic array of biological activities including cell proliferation, survival, motility and morphogenesis. Its high affinity receptor, the tyrosine kinase Met, is expressed by a wide range of tissues and can be activated by either paracrine or autocrine stimulation. Adult myogenic precursor cells, the so called satellite cells, express both HGF and Met. Following muscle injury, autocrine HGF-Met stimulation plays a key role in promoting activation and early division of satellite cells, but is shut off in a second phase to allow myogenic differentiation. In culture, HGF stimulation promotes proliferation of muscle precursors thereby inhibiting their differentiation. METHODOLOGY/PRINCIPAL FINDINGS Magic-Factor 1 (Met-Activating Genetically Improved Chimeric Factor-1 or Magic-F1) is an HGF-derived, engineered protein that contains two Met-binding domains repeated in tandem. It has a reduced affinity for Met and, in contrast to HGF it elicits activation of the AKT but not the ERK signaling pathway. As a result, Magic-F1 is not mitogenic but conserves the ability to promote cell survival. Here we show that Magic-F1 protects myogenic precursors against apoptosis, thus increasing their fusion ability and enhancing muscular differentiation. Electrotransfer of Magic-F1 gene into adult mice promoted muscular hypertrophy and decreased myocyte apoptosis. Magic-F1 transgenic mice displayed constitutive muscular hypertrophy, improved running performance and accelerated muscle regeneration following injury. Crossing of Magic-F1 transgenic mice with alpha-sarcoglycan knock-out mice -a mouse model of muscular dystrophy- or adenovirus-mediated Magic-F1 gene delivery resulted in amelioration of the dystrophic phenotype as measured by both anatomical/histological analysis and functional tests. CONCLUSIONS/SIGNIFICANCE Because of these features Magic-F1 represents a novel molecular tool to counteract muscle wasting in major muscular diseases such as cachexia or muscular dystrophy.
منابع مشابه
Localization of Magic-F1 Transgene, Involved in Muscular Hypertrophy, during Early Myogenesis
We recently showed that Magic-F1 (Met-activating genetically improved chimeric factor 1), a human recombinant protein derived from hepatocyte growth factor/scatter factor (HGF/SF) induces muscle cell hypertrophy but not progenitor cell proliferation, both in vitro and in vivo. Here, we examined the temporal and spatial expression pattern of Magic-F1 in comparison with Pax3 (paired box gene 3) t...
متن کاملType I insulin-like growth factor receptor signaling in skeletal muscle regeneration and hypertrophy.
Skeletal muscle is able not only to increase its mass as an adaptation to mechanical loading generated by and imposed upon muscle but also to regenerate after damage, via its intrinsic regulation of gene transcription. Both cellular processes, muscle regeneration and hypertrophy, are mediated by the activation, proliferation and differentiation of muscle satellite cells and appear to be modulat...
متن کاملIdentification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle
Putative myogenic and endothelial (myo-endothelial) cell progenitors were identified in the interstitial spaces of murine skeletal muscle by immunohistochemistry and immunoelectron microscopy using CD34 antigen. Enzymatically isolated cells were characterized by fluorescence-activated cell sorting on the basis of cell surface antigen expression, and were sorted as a CD34+ and CD45- fraction. Ce...
متن کاملSensitivity of skeletal muscle to pro-apoptotic factors.
In mononuclear cells, apoptosis leads to DNA fragmentation and cell destruction, regardless of the activated pathway. As regards multinuclear cells, e.g. skeletal muscle fibers, apoptosis rarely induces the death of the entire cell, and it generally affects single nuclei. This process, referred to as nuclear apoptosis, has a negative effect on the expression of genes in the myonuclear domain. A...
متن کاملDual effect of HGF on satellite/myogenic cell quiescence. Focus on "High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin: a possible mechanism for reestablishing satellite cell quiescence in vivo".
ADULT SKELETAL MUSCLE shows a very high level of plasticity that is necessary for adaptation to various conditions. Moreover, it possesses the remarkable capacity to regenerate after injury, and such plasticity derives from the properties of satellite cells—a group of cells that restore muscle function throughout their lifespan. Normally quiescent under steadystate conditions, satellite cells a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008